

Sexual Reproducⁿ In flowering plants.

- ↳ It is the formⁿ of new individuals through the formⁿ fusion of gametes leading to embryo formⁿ.
- ↳ flowering plants :- Angiosperm → Higher plants

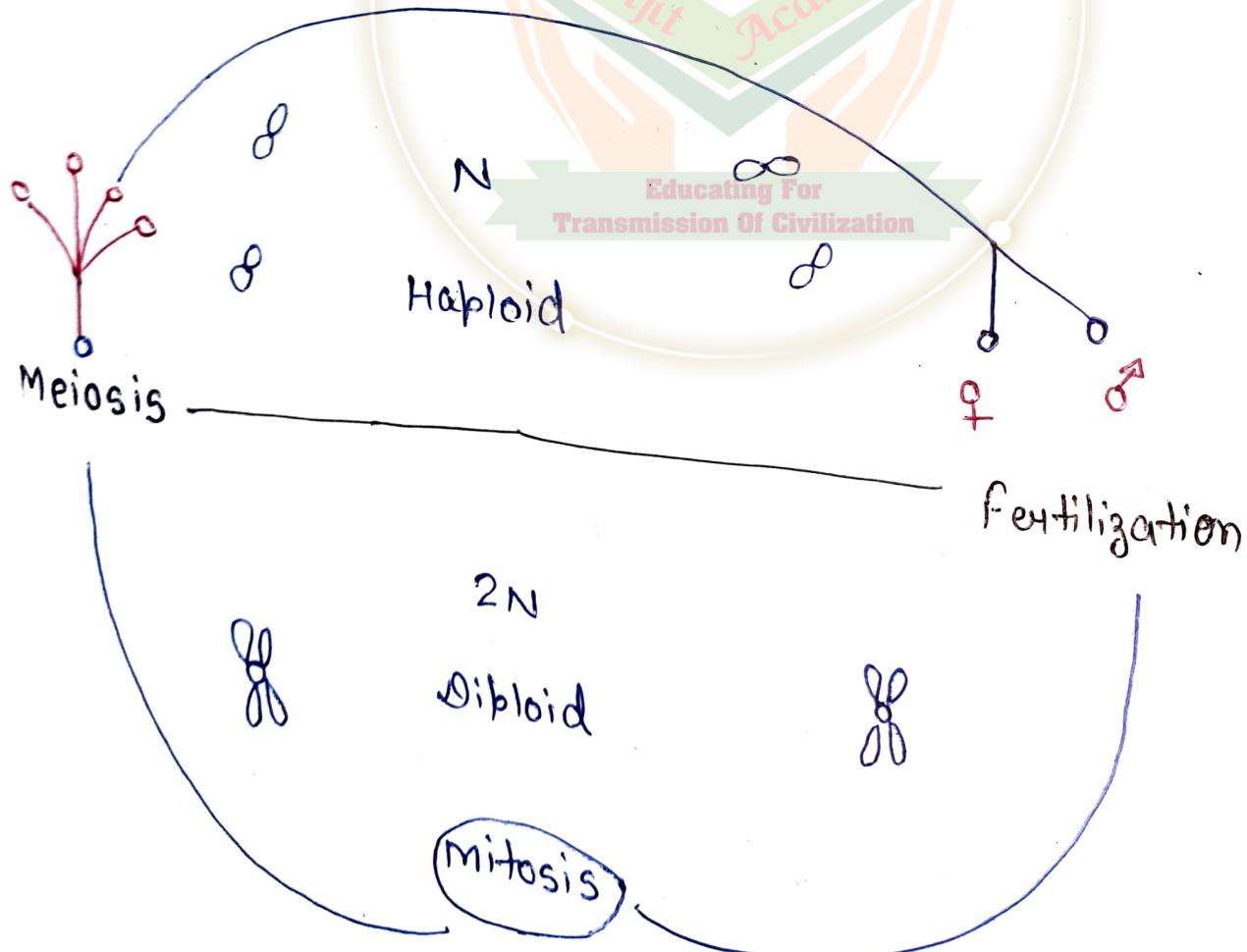
Advantage of Sexual Reproducⁿ :- Also called → Amphimixis

- ↳ It involves fusion of male & female gamete.
- ↳ genetic Variation & recombination occur.
- ↳ The possibility of develop. of new characters.
- ↳ The capacity of Adaptation is more.

flowering plants :-

- * Xylem - Tracheids, Vessels.
- * Phloem - Sieve tube, Companion cells
- * Double fertilization •
 - proposed by (Nawaschin)

} muscular tissue


Types of Angiosperms :- They are following "two" types.

Monocot :- One seed coat present.

Eg:- Rice, wheat

Dicot :- Two seed coat present.

Eg:- Guava, Mango, Pear.

Sexual Reproducⁿ → Amphimixis.
Asexual Reproducⁿ → Apomixis → Process Sexual
reproducⁿ type,
either Asexual reproducⁿ.

flowers :- 1) They are modification of a condensed shoots.

* 2) This is the type of leaves.

3) It's reproductive part of the plant body.

Structure of Flower.

A flower with Pedicel → Pedicillate.

without Pedicel → Sessile.

Four whorls of floral leaves may be found on a flower.

a) Calyx - Sepals

b) Corolla - Petals

c) Androecium → ♂ reproductive part.

d) Gynoecium → ♀ Reproductive part.

→ Androecium :- a) Also called → Male reproductive part.
 b) Androecium contains → Stamens.
 c) Stamen is made up of → Anther & filament.

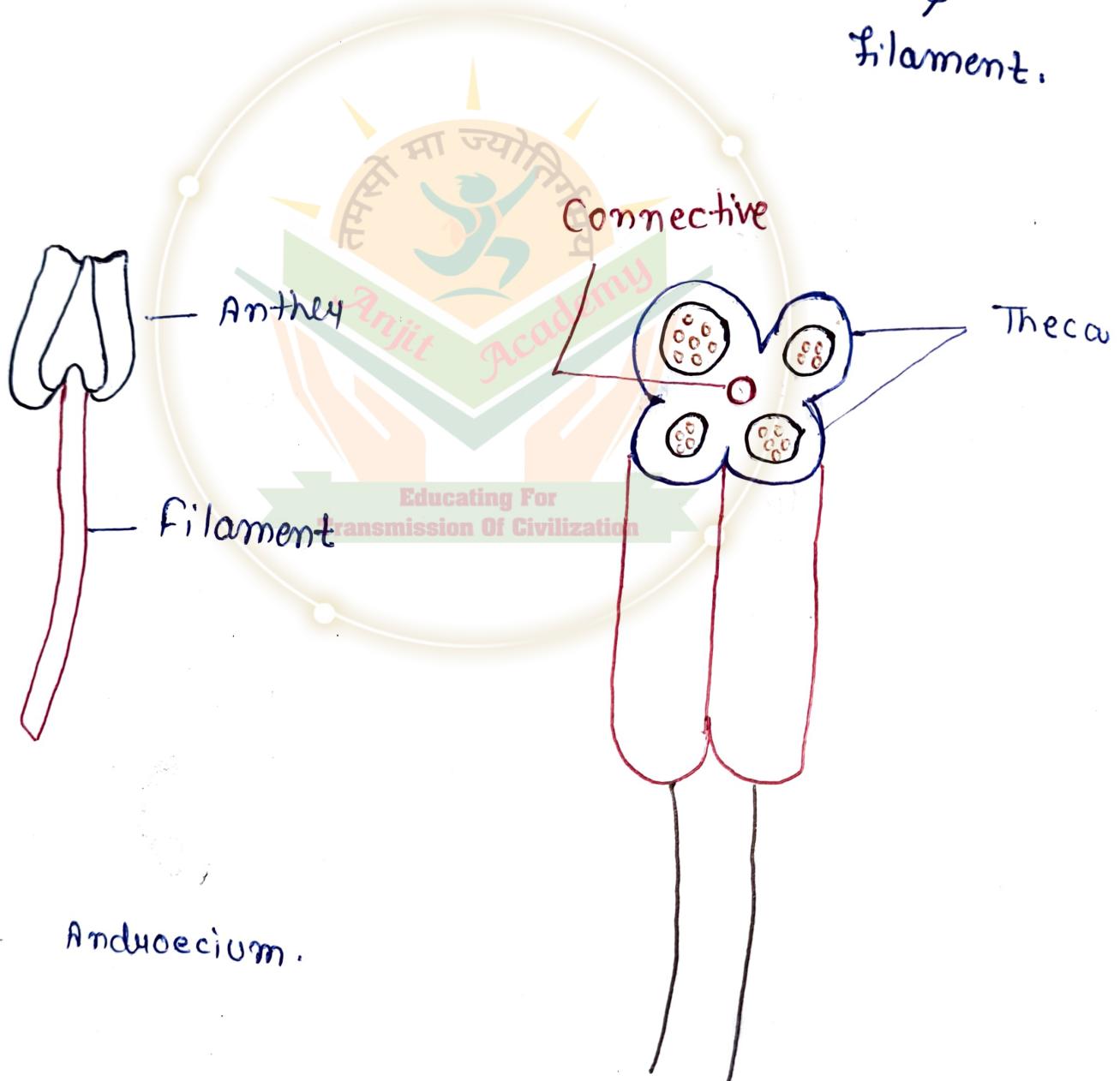


Fig:- Androecium.

Gynoecium :- a) Also called \rightarrow female reproductive part. (Pistil). / carpel

b) Gynoecium contains → O.S.S.
ovary | style stigma.

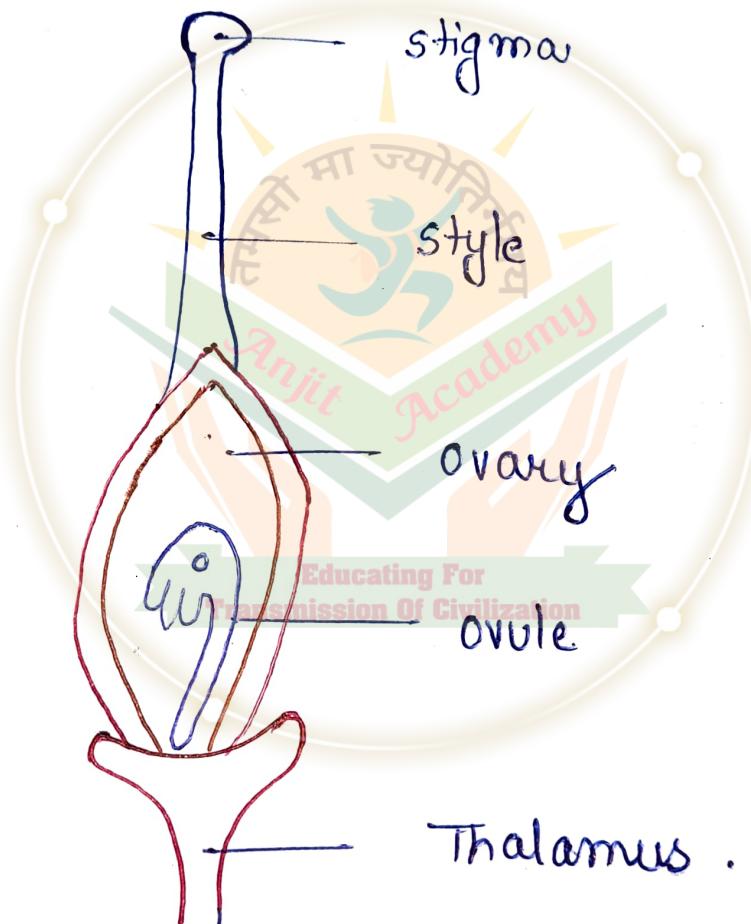
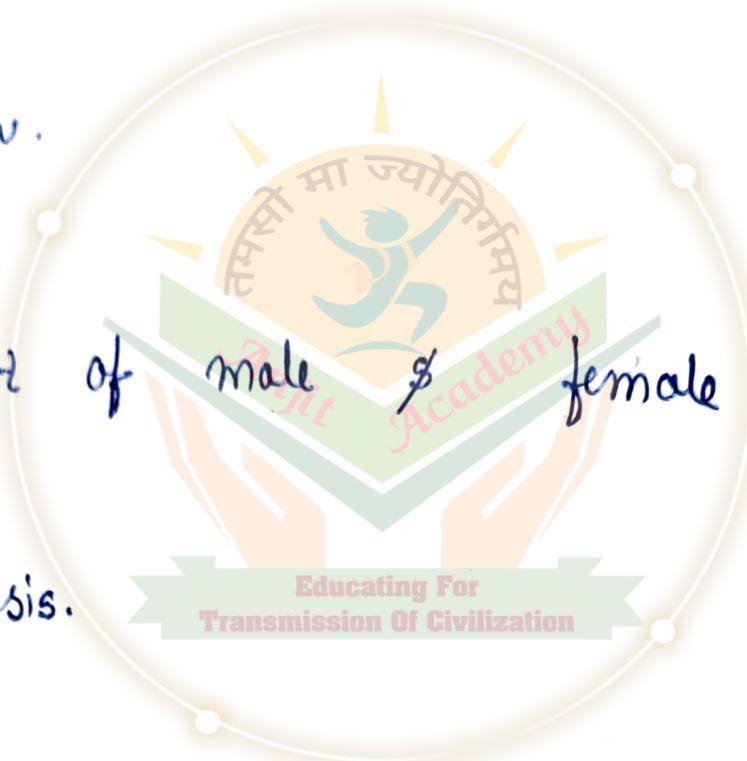



fig:- Gynoecium.

→ steps of sexual reproduction in Higher plants :-

- 1) Microsporogenesis and Megasporogenesis.
- 2) Pollination.
- 3) Development of male [♂] _{male} and female _♀ _{female} gametophyte.
- 4) Gametogenesis.
- 5) Fertilization.
- 6) Embryogenesis.

Microsporogenesis.

Formation of Anther.

Structure of Anther :-

- a) Epidermis → Outer most part.
- b) Endodermis → Just below the epidermis.
- c) Middle layer → Below the epidermis. It is 2 to 3 cell thick layer.
- d) Tapetum →
 - 1) Below the middle layer.
 - 2) Just outside the pollen chamber.
 - * 3) They are diploid cell.
 - 4) They are nutritive tissue, nourishing the developing microspores.

Microsporangia → 1) Present on the Inner side of tapetum.

* 2) It contains a large no. of pollen grains.

Structure of Anther

Bilobed

Each anther lobe
has

Two Theca - (Sac like Stew.)

Each Theca has → [After maturation they are
- fuse with each other.]

One Microsporangia

Anther is

Tetrasporangiate

Structure of

Microsporangium

①

The development
of microsporangium
in Angiosperms in

Eusporangiade- (multi cell-
microspore)

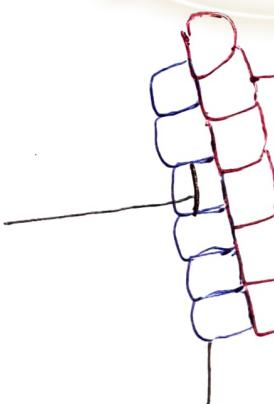
② The
show
rise
to.

archesporial cells, \rightarrow (Anther primordium)

cross cut

periclinal division & gives

rise to.


a) outer parietal Cells.

b) Inner sporogenous Cells.

Anticlinal
division

Periclinal
division

Epidermis

Endodermis/Hyphodermal

Cell develops into

Archesporial Cells.

Archesporial Cell

Parietal
cells

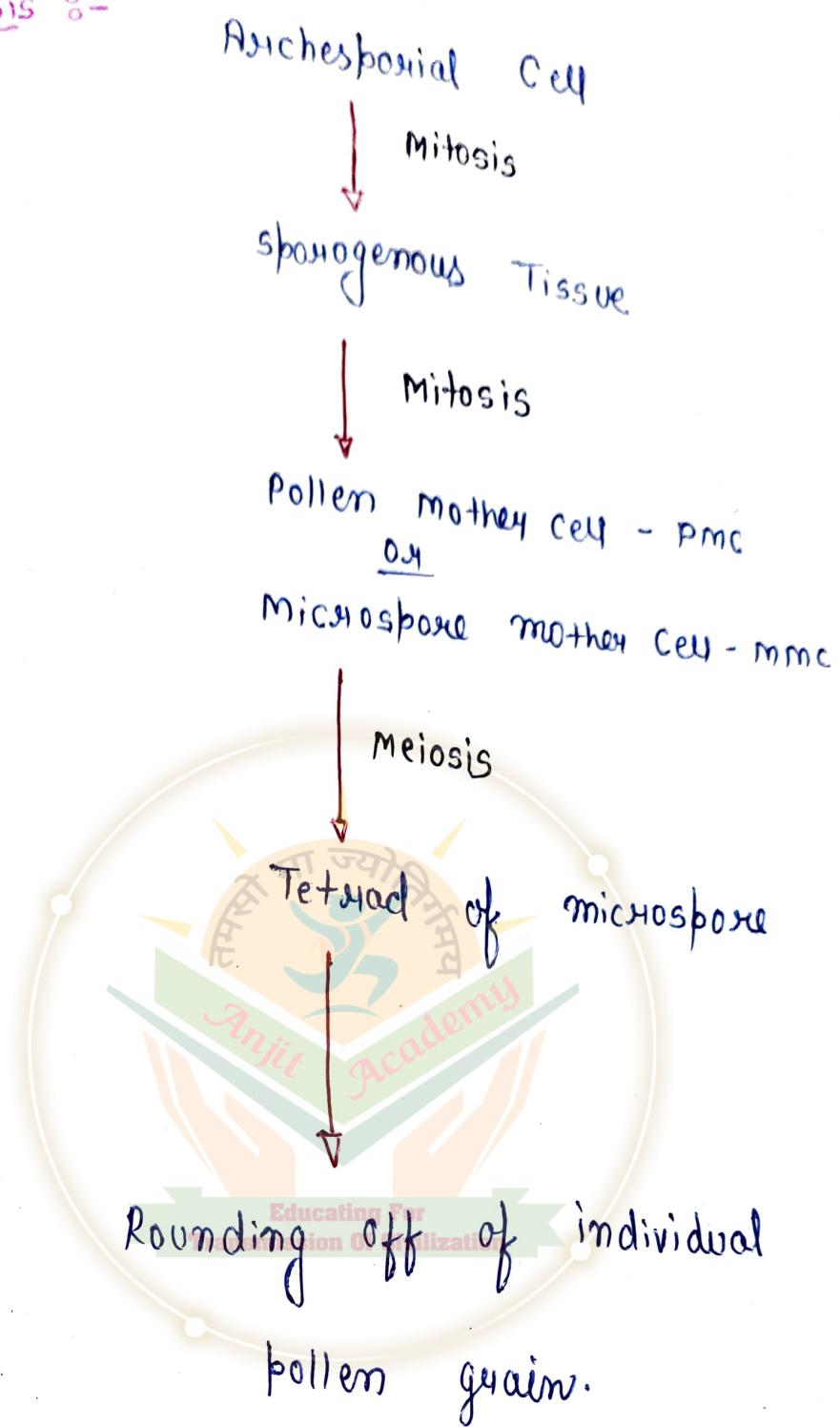
(sub-epidermal)

forms outer wall
layers.

sporogenous cells
(inner)

differentiate into
microspore mother
cells.

sporogenous

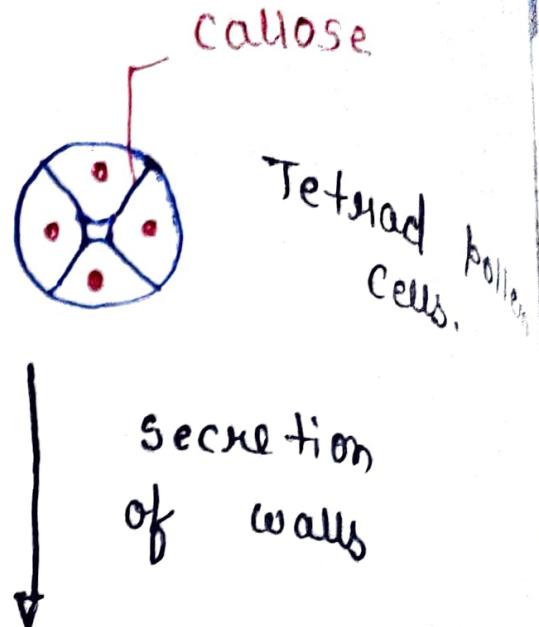

formation of
pollen grains

* The parietal cells given by
produce 3-5 layers periclinal division to
wall of microsporangium

* The wall consists of Endothecium, middle layers &

Tetradium

Microsporogenesis :-


- ↳ MMC are microsporocytes develop an internal layer of Callose: (β - 1,3 glucan).
- ↳ This layer breaks the plasmodesmatal connections b/w the Cells.

Pollen mother cell

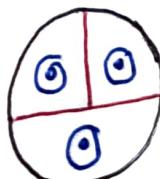
Meiosis - I

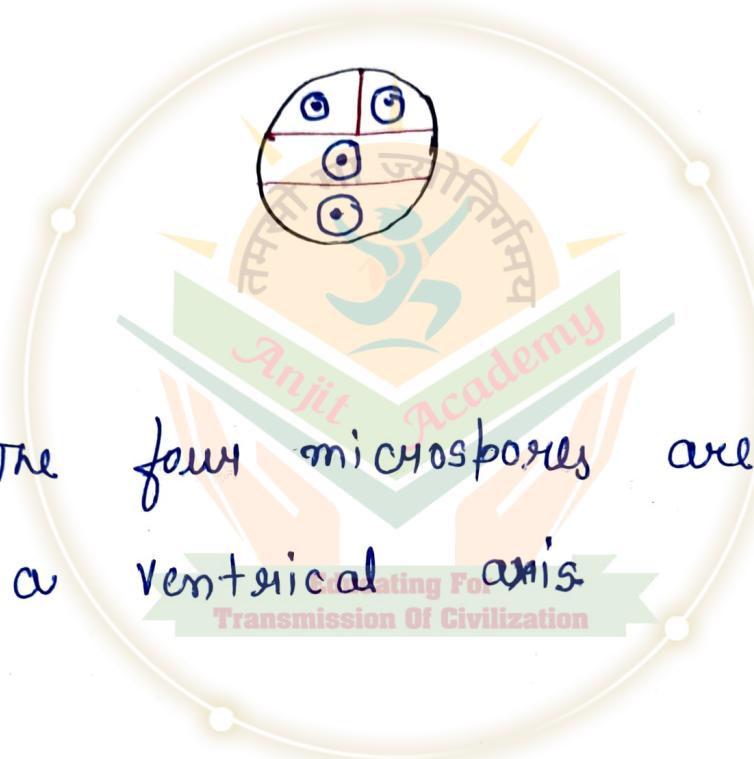
Meiosis - II

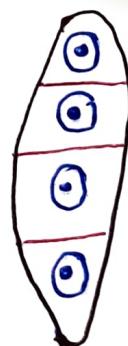
Arrangement of microspores :- The 4 microspores developing from a

microspore mother cell may be arranged in following ways :-

1) Isobilateral :- The 4 microspores lie side by side.


(Monocot)


2) Tetrahedral :- Microspores are arranged tetrahedrally.


3) Decussate :- In this type, the upper & lower pairs of microspores are arranged in opposite direction.

4) T - shaped :- In this type, the upper two microspores are horizontally in position, while lower two are ventrally arranged.

5) Linear :- The four microspores are arranged on a ventral axis.

Structure of Pollen grain 3 - Microspore

Microspore are generally spherical, measuring about 25-50 micrometers in diameter.

It has two layered wall.

Outer wall layer

Thick, rigid & ornamented

Called, Exine

This layer is formed mainly by → Sporopollenin:

It is covered by a

yellowish viscous

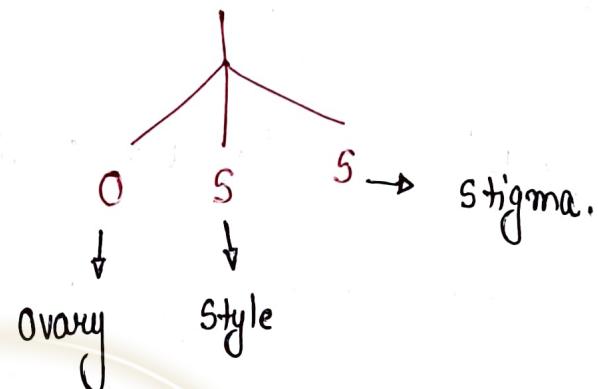
& sticky subs.

Called → Pollenkitt

Inner layer

Thin, continuous, soft & elastic in nature.

Called, Intine


It's made up of pectin, Cellulose,

* Study of pollen grains is called →

Female Gametophyte

1) Gynoecium is the female reproductive organ.

2) F.R.O. also called as \rightarrow Carpel, Pistil.

Structure of megasporangium :-

↳ Ovule is also K/a \rightarrow megasporangium.

↳ Each Ovule is attached to the placenta by stalk

Called \rightarrow Funicle, funiculus & funiculum.

* ↳ Junction b/w ovule & funicle, is called \rightarrow Hilum.

↳ The main region of the ovule is composed of mass of parenchymatous cells, called \rightarrow Nucellus.

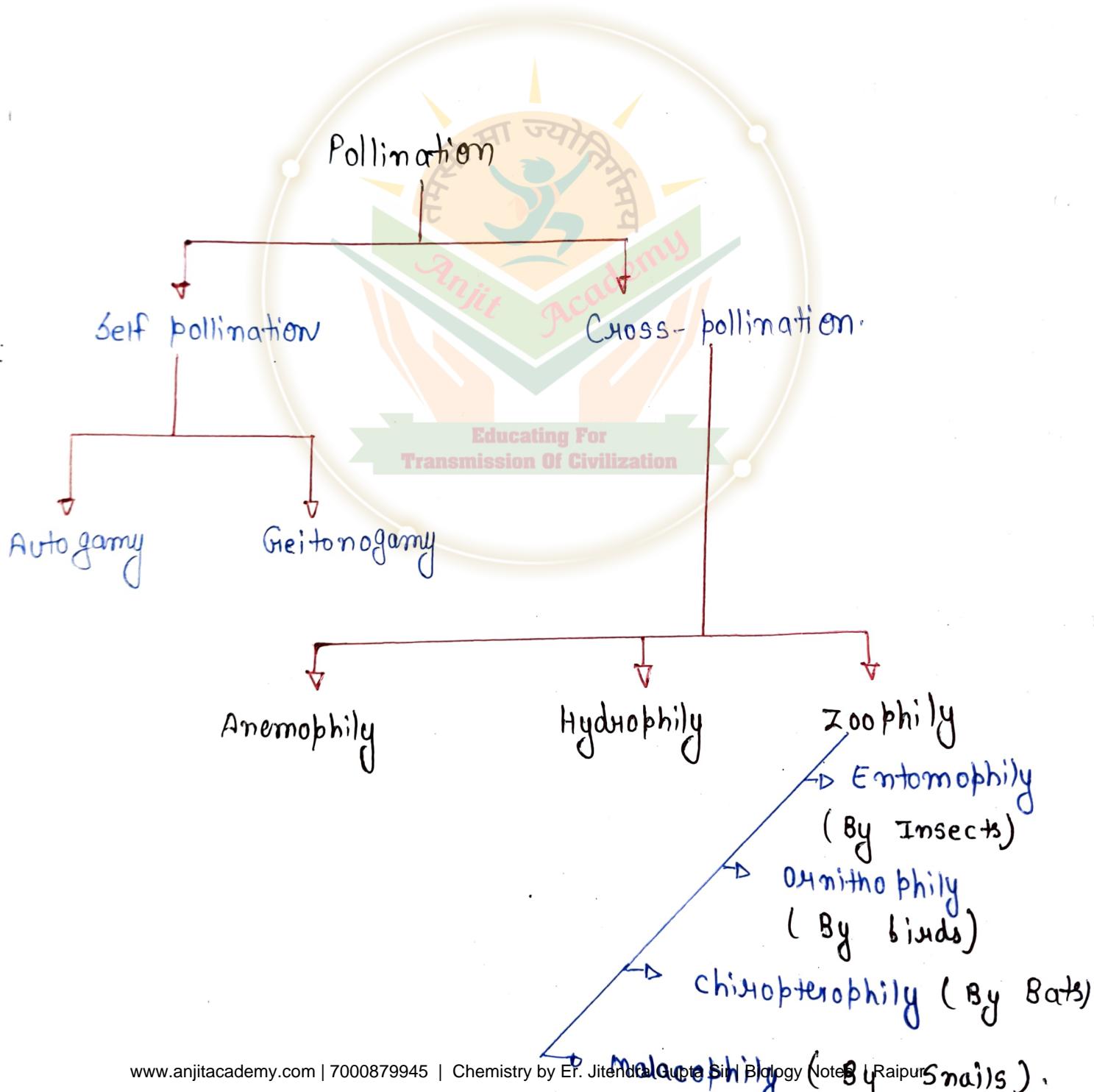
\downarrow
It's the main
part of ovule.

- ↳ The nucellus is covered by one or two coats or protective envelope called \rightarrow Integuments.
- ↳ The integuments are incomplete at the apex of ovule forming a pore, called \rightarrow Micropyle.
- ↳ opposite the micropylar end, is the chalaza, representing the basal part of the ovule.
- ↳ embedded inside the nucleus & towards the micropylar end, there is a large oval sac consisting of few cells, called \rightarrow Embryo sac.
 - It contains 8 cells
 - ↓
 - out of 3 cells formed Egg apparatus.
- * Two polar nuclei situated at the center of embryo sac & 3 cells at the chalazal end \rightarrow Antipodal cells.

→ Development of ovule :-

- ↳ In the beginning of this process, nucellus develops from the placenta in the form of a small rounded out growth like stew.
- ↳ Any one Hypodermal cell of nucellus differentiates & increases in size. It is called → Archesporial cell.
- ↳ Archesporial cell forms a primary Parietal cell & primary sporogenous cell.
- *→ The primary sporogenous cell directly acts as a megasporangium mother cell. (at microtyle end).
- ↳ MMC is large cell with dense cytoplasm and a prominent nucleus.

MMC divides meiotically to form, four haploid → megasporangia.


→ Megasporogenesis :- a) The process of formation of megasporangia from MMC. is called → megasporogenesis.

- b) The four haploid megasporangia are generally arranged in linear tetrad.
- c) In a majority of flowering plants the lower chalazal megasporangium remains functional, & the other three which are towards the microphyte degenerate.
- d) The functional megasporangium produces → female gametophyte.
- e) This method of embryo sac formation from megasporangium is called → Monosporic development.

Pollination

Transfer of pollen grains from anther to the stigma

Kinds of pollination :- Pollination is of different types :- on the basis of source of pollen.

Self pollination

The transfer of pollen grains from anthers to the stigma of the same flower is $\frac{1}{a} \rightarrow$ self pollination.

Types of pollination :-

1) Autogamy

→ when a flower is pollinated by its own pollen.

Ex:- Wheat, Pea, Rice, etc.

2) Geitonogamy

→ when pollen grains from one flower are transferred on the stigma of another flower on the same plant.

Ex:- Onion, broccoli, spinach.

Cross pollination

1) Also called as \rightarrow Allogamy.

2) Transfer of pollen grains from the anthers to the stigma of flower of the same species.

Types:-

Cross pollination

Abiotic

Biotic.

Anemophily
By air
Ex:- maize, sugarcane, Bamboo, grasses.

Hydrophily
By water
Ex:- Vallisneria, Hydrilla.

Entomophily → By Insects,
Ex:- Babul, Touch me not, Bougainvillea.

Ornithophily → By birds.

Chiropteronophily → By Bats.

Malacophily → By Snails.

Self Incompatibility

Pollen - Pistil Interaction.

- a)
- ↳ Incompatibility → Inability of pollen grains to germinate on a stigma.
- b) It's Very Common phenomenon in Nature.
- ↳ Self incompatibility is the phenomenon in which pollen grains fail to germinate on the stigma of the flower that produced them.

Significance :- 1) The process of inbreeding & outbreeding is controlled by this.

- 2) It is favorable for the production of healthy & more viable seeds.
- 3) Due to this process, new combination of genes are produced in every generation.

Fertilization

It is the process of fusion of two dissimilar sexual reproductive units, called \rightarrow gametes.

After pollination, fertilization takes place in the following steps.

- 1) Germination of pollen grains :- a) After pollination when the pollen grains reach the stigma they absorb moisture & swell up.
- 2) The intine grows out through a germ pore in the form of a germ tube / pollen tube.
- 3) The growth of pollen tube is stimulated by sugary substances secreted by Stigma.

2) Course of pollen tube :- They are following "four" types.

1) Siphonogamy :- Pollen tube moves towards the micropyle of the ovule and enters through style.

2) Prothogamy :- Pollen tube enters the ovule through the micropyle.

3) Mesogamy :- Pollen tube enters the ovule through integuments.

4) Chalazogamy :- Pollen tube enters inside embryo sac through chalazal end of ovule.

5) Entry of pollen tube into embryo sac & fusion of gametes :-

a) The fully developed embryo sac at this stage consist of 3- Antipodal cells and Secondary Nucleus

2 - synergids, one egg cell.

b) Pollen tube penetrates through the nucellus & enters into the embryo sac.

4) Discharge of male gametes :- a) After entry of pollen tube into embryo sac.

b) The tip of pollen tube dissolves & the two male gametes are discharge.

5) Fusion of male & female gametes :- a) After discharge, one fuses with the egg cell to form Diploid zygote/oospore. While the other moves to the secondary nucleus.

b) The fusion b/w male & female gametes is called \rightarrow Syngamy/fertilisation.

c) The second male gamete fuse with secondary nucleus ($2n$) to give rise to Endosperm nucleus ($3n$).

d) The fusion b/w second male gamete & secondary nucleus is called \rightarrow Triple fusion.

Double - Fertilization.

- ↳ It is the characteristic feature of Angiosperms.
- ↳ The two male gametes formed inside the pollen tube different in their size.
- ↳ The larger male gamete fuse with Secondary Nucleus.
- ↳ While smaller male gamete fuses the egg forming zygote.
- * → The Double fertilization/fusion of the haploid (n) Secondary nu. & haploid (n) male gamete results into the formation of Triploid Endosperm Nucleus ($3n$).

Significance :-

- 1) The Triploid nu. (Endosperm Nu.) developed to form an Endosperm, which provides nourishment to Embryo.
- 2) Being triploid in nature, the Endosperm is capable of absorbing food materials.
- 3) The development of Embryo & Endosperm is interdependent on each other.

Development In flower

→ Also called

after Fertilisation

as

Post - Fertilisation
events.

- ↳ Develop. of Endosperm.
- ↳ Develop. of Embryo.
- ↳ Develop. of Seed.

→ Endosperm :- a) Endosperm develop. precedes embryo

develop.

* b) Endosperm is a triploid struc.

* c) It's formed by Double fertilisation $\frac{1}{2}$
triple fusion.

d) Endosperm is a nutritive struc. which is meant
for nourishing the embryo in seed plants.

e) The seed without Endosperm \rightarrow exalbuminous.
Ex:- bean, pea, Radish, sunflower

f) The seed with Endosperm \rightarrow Albuminous.

Ex:- most monocots \rightarrow grass, palms.

Types of Endosperm :- 3 - types.

1) Free Nuclear Endosperm → a) very common.

Ex:- Poaceal, Asteraceal.

Pear

Aster

Sun-Flower.

2) Cellular Endosperm →

Ex:- Datura, Petunia.

3) Heteroblastic Endosperm →

Ex:-

Vallisneria, Asphodelus.

Anjita Academy
Educating For
Transmission Of Civilization

Development of Embryo

- ↳ Embryo develops at the microvillous end of the embryo sac where zygote is situated.
- ↳ The process of development of embryo from the zygote is called \rightarrow Embryogenesis or embryony.
- ↳ Most zygote divide only after certain amount of endosperm is formed. This is an adaptation to provide assured nutrition to the developing embryo.
- ↳ The embryonal cell divides by mitotic divisions to give rise to the proembryo & subsequently to the globular, heart shaped & mature embryo.

Dicot - Embryo.

1) A typical dicot embryo consists of an embryonal axis and two cotyledons.

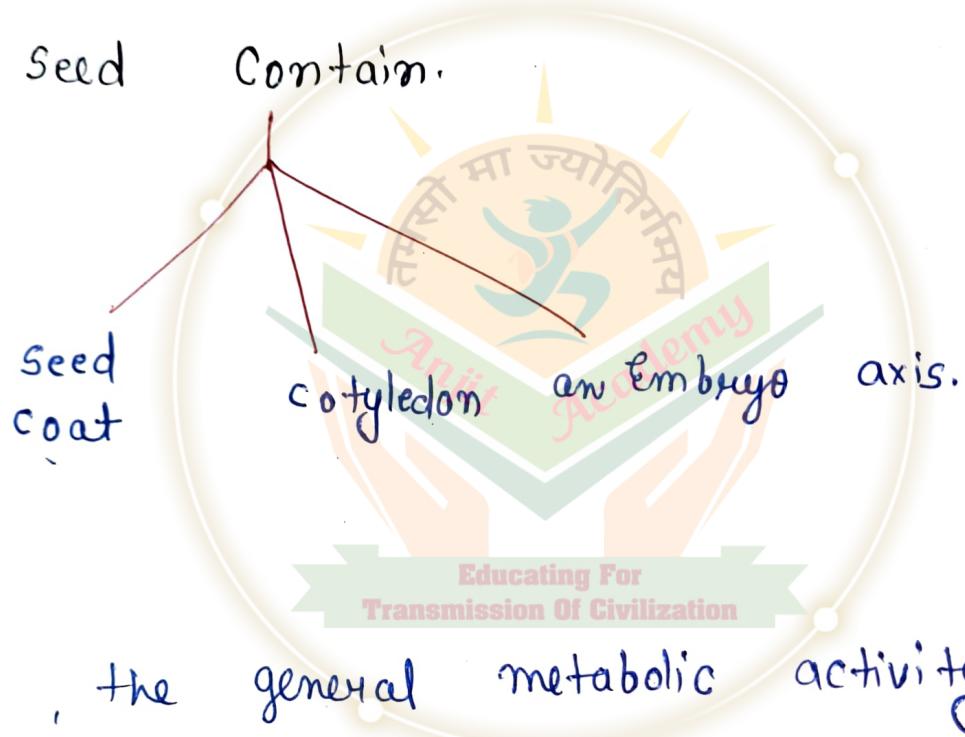
2) Embryonal axis \rightarrow a) Axis present b/w plumule and radicle is called \rightarrow Embryonal axis.
b) Also \rightarrow C/a \rightarrow Tigellum. [main embryonal axis]

3) The position of embryonal axis above the level of cotyledons is \rightarrow Epicotyl. \rightarrow It terminates \rightarrow plumule.

4) The position of embryonal axis below the level of cotyledons is \rightarrow Hypocotyl. \rightarrow It terminates \downarrow Radicle.

Embryo develops in Dicots :-

Crucifer type


Monocot - Embryo

- It posses only one Cotyledon, called \rightarrow **Scutellum** that is situated towards one side of the embryonal axis.
- At its lower end, the embryonal axis has the radical & root cap enclosed in an undifferentiated sheath called \rightarrow **Coleorrhiza**.
- The portion of the embryonal axis above the level of attachment of scutellum \rightarrow **Epicotyl**
- Epicotyl has a shoot apex, and a few leaf primordia, called \rightarrow **coleoptile**.

Seed.

- In Angiosperms, the seed is the final product of sexual reproduction.
- It is fertilised ovule.
- * → Seeds are formed inside fruits.

- A seed contain.

- * when, the general metabolic activity of the embryo slows down. The embryo may enter a state of Inactivity, called → **Dormancy**.

- * The wall of Ovary develops into the wall of fruit, called → **Pericarp**.

→ False fruit :- A fruit formed from other floral parts.

Ex :- Apple, strawberry, cashew.

→ True fruit :- A fruit formed from fertilised

ovary.

Ex:- watermelon, lemon, cherry,
blueberries.

→ Parthenocarpic fruits :- There are a few species in which fruits develop without fertilisation.

b) This process is $\frac{1}{2}a \rightarrow$ Parthenocarpic.

c) Ex:- Banana, pineapple, grape, orange, cucumber etc.

Apomixis :- It is a form of asexual reproduction that occurs via seeds, in which Embryo develops without fertilisation.

Ex:-

Blackberries, grass, hawkweeds.

Polyembryony :- The formation of more than one embryo from a single fertilised ovum or in a single seed.

Ex:-

Mango, Jamun.