

* Students are advised to solve the questions of exercises in the same sequence or as directed by the **Faculty Members.***

Mathematics Chapter - 04

Conceptual Notes for IIT-JEE/PET/Boards

Table of Contents :

- Definition
 - 1. Test of differentiability of $y = f(x)$ at $x = c$
 - 2. When $y = f(x)$ is not differentiable
- Derivative of any Function
- Differentiability over an Interval
- Definition of Differential Coefficient
- Different Method of Differentiation
- Theorems of Differentiation
 - 1. Some standard formulae
 - 2. Chain rule
 - 3. Differentiation of parametric functions
 - 4. Differentiation by taking logarithm
 - 5. Differentiation of a function w.r.t to another function
 - 6. Differentiation of implicit functions
 - 7. Differentiation of Determinants
 - 8. Higher order derivatives
- Solved Example
- Some previous Year Question of JEE

1. Definition :

1.1 Test of differentiability of $y = f(x)$ at $x = c$

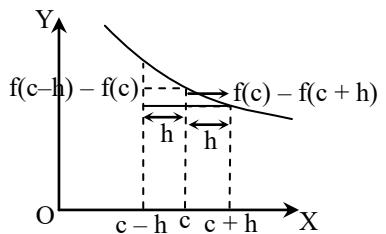
Let $y = f(x)$ be defined in $[a, b]$ and continuous in $[a, b]$, then $f(x)$ is said to be differentiable at $x = c$, $a < c < b$ or $f(x)$ has a derivative at $x = c$. If $RHD = LHD$

$$\text{Where, } RHD = \lim_{h \rightarrow 0} \frac{f(c+h) - f(c)}{h} \quad LHD = \lim_{h \rightarrow 0} \frac{f(c) - f(c-h)}{h}$$

RHD is called right hand derivative. LHD is called left hand derivative. Geometrically, $f(x)$ is differentiable at a point if there exists a unique tangent at the point.

1.2 When $y = f(x)$ is not differentiable

If $LHD \neq RHD$, then $f(x)$ is said to be not differentiable. To test the differentiability $y = f(x)$ must be continuous. If a function is discontinuous at a point, it is not differentiable at that point.



2. Derivative of any Function :

Derivative of any function $f(x)$ at $x = a$ is given by : $f'(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}$

(i) The right hand derivative of 'f' at $x = a$

denoted by $f'_+(a)$ is defined by $f'_+(a) = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$ provided the limit exists and is finite.

(ii) The left hand derivative of 'f' at $x = a$

denoted by $f'_-(a)$ is defined by $f'_-(a) = \lim_{h \rightarrow 0} \frac{f(a-h) - f(a)}{-h}$ provided the limit exists and is finite.

We also write, $f'_+(a) = f'(a^+)$ and $f'_-(a) = f'(a^-)$

(iii) Derivability and Continuity If $f'(a)$ exists then $f(x)$ is derivable at $x = a \Rightarrow f(x)$ is continuous at $x = a$

➤ Note : (a) Let $f'_+(a) = p$ and $f'_-(a) = q$ where, p & q are finite then

(i) $p = q \Rightarrow f$ is derivable at $x = a \Rightarrow f$ is continuous at $x = a$

(ii) $p \neq q \Rightarrow f$ is not derivable at $x = a$

in short, for a function f

- Differentiable \rightarrow Continuous i.e. differentiability \Rightarrow Continuity
- Not differentiable \rightarrow May or May Not be Continuous i.e. Non differentiability \Rightarrow either of continuity or discontinuity
- But not continuous \rightarrow Not Differentiable i.e. Discontinuity \Rightarrow not differentiable

- Continuous \rightarrow may or may not differentiable i.e. continuity \Rightarrow either differentiability **or** non differentiability
- (b) If a function f is not differentiable but is continuous at $x = a$ it geometrically implies a sharp corner at $x = a$

3. Differentiability over an Interval:

$f(x)$ is said to be derivable over an interval if it is derivable at each and every point of the interval $f(x)$ is said to be derivable over the open interval (a, b) . if for any point c such that $a < c < b$, $f'(c^+)$ & $f'(c^-)$ exist and are equal.

►Note :

- If $f(x)$ is differentiable at $x = a$ & $g(x)$ is not differentiable at $x = a$ then the product function $F(x) = f(x) \cdot g(x)$ can still be differentiable at $x = a$ e.g. $f(x) = x$ and $g(x) = |x|$.
- If $f(x)$ and $g(x)$ both are not differentiable at $x = a$ then the product function $F(x) = f(x) \cdot g(x)$ can still be differentiable at $x = a$ e.g. $f(x) = |x|$ and $g(x) = |x|$.
- If $f(x)$ is derivable at $x = a$ and $g(x)$ is not derivable at $x = a$, then the sum function $F(x) = f(x) + g(x)$ must be non-derivable at $x = a$
- If $f(x)$ and $g(x)$ both are non-derivable at $x = a$ then the sum function $F(x) = f(x) + g(x)$ may be a differentiable function. e.g. $f(x) = |x|$ and $g(x) = -|x|$.

4. Definition of Differential Coefficient:

If $y = f(x)$ is a function, then derivative of y with respect to x is given by - $f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$

5. Different Method of Differentiation: Differentiation by first principle :

$$\frac{dy}{dx} = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} = \lim_{\delta x \rightarrow 0} \frac{f(x + \delta x) - f(x)}{\delta x}$$

6. Theorems of Differentiation :

$$(i) \frac{d}{dx} (\text{constant}) = 0$$

$$(ii) \frac{d}{dx} [c f(x)] = c \frac{d}{dx} (f(x)); \text{ where } c \text{ is a constant,}$$

$$(iii) \frac{d}{dx} [f_1(x) \pm f_2(x)] = \frac{d}{dx} f_1(x) \pm \frac{d}{dx} f_2(x)$$

$$(iv) \frac{d}{dx} [f_1(x) \cdot f_2(x)] = f_1(x) \frac{d}{dx} f_2(x) + f_2(x) \frac{d}{dx} f_1(x)$$

$$(v) \frac{d}{dx} \left(\frac{f_1(x)}{f_2(x)} \right) = \left[\frac{f_2(x) \frac{d}{dx} f_1(x) - f_1(x) \frac{d}{dx} f_2(x)}{[f_2(x)]^2} \right]; f_2(x) \neq 0$$

6.2 Chain rule :

If y is a function of t and t is a function of x then; $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$

In general: If y be function of z . z be function of u , u be function of

v, \dots Then $\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{du} \cdot \frac{du}{dv} \dots$

6.3 Differentiation of parametric functions:

Let x & y be the functions of parameter t ,

$$\text{thus } x = f(t); y = \phi(t) \text{ then } \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\phi'(t)}{f'(t)}$$

6.4 Differentiation by taking logarithm :

This is mostly used, for the functions where form of function is

$$[f(x)]^{\phi(x)}$$

6.5 Differentiation of a function w.r.t to another function:

$$\frac{df(x)}{d\phi(x)} = \frac{\frac{d}{dx} f(x)}{\frac{d}{dx} \phi(x)} = \frac{f'(x)}{\phi'(x)}$$

6.6 Differentiation of implicit functions :

To find $\frac{dy}{dx}$ in the case of a implicit function, differentiate each term

of the given equation w.r.t x , then solve the expression for the term $\frac{dy}{dx}$.

6.1 Some standard formulae :

Some standard formulae which are used in differentiation are:

$$(i) \frac{d}{dx} x^n = nx^{n-1},$$

$$(ii) \frac{d}{dx} a^x = a^x \log a$$

$$(iii) \frac{d}{dx} e^x = e^x,$$

$$(iv) \frac{d}{dx} (\log x) = 1/x \left(\frac{d}{dx} \log |x| = \frac{1}{x} \right)$$

$$(v) \frac{d}{dx} \cos x = -\sin x,$$

$$(vi) \frac{d}{dx} \sin x = \cos x$$

$$(vii) \frac{d}{dx} \operatorname{cosec} x = -\operatorname{cosec} x \cot x$$

$$(viii) \frac{d}{dx} \tan x = \sec^2 x,$$

$$(ix) \frac{d}{dx} \cot x = -\operatorname{cosec}^2 x$$

$$(x) \frac{d}{dx} \sec x = +\sec x \tan x$$

$$(xi) \frac{d}{dx} (\log_a x) = \frac{1}{x(\log_e a)} = \frac{1}{x} \log_a e$$

$$(xii) \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}},$$

$$(xiii) \frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}}$$

$$(xiv) \frac{d}{dx} \sec^{-1} x = \frac{1}{|x| \sqrt{x^2 - 1}}$$

$$(xv) \frac{d}{dx} \operatorname{cosec}^{-1} x = -\frac{1}{|x| \sqrt{x^2 - 1}}$$

$$(xvi) \frac{d}{dx} \sqrt{x} = \frac{1}{2\sqrt{x}}$$

6.7 Differentiation of Determinants :

To differentiate a determinant, differentiate one row (or column) at a time, keeping others unchanged.

$$\text{If } \Delta(x) = \begin{vmatrix} A(x) & B(x) \\ C(x) & D(x) \end{vmatrix} \text{ then } \frac{d}{dx} \Delta(x) = \begin{vmatrix} A'(x) & B'(x) \\ C(x) & D(x) \end{vmatrix} + \begin{vmatrix} A(x) & B(x) \\ C'(x) & D'(x) \end{vmatrix}$$

6.8 Higher order derivatives :

If $y = f(x)$ then the derivative of $\frac{dy}{dx}$ w. r. t. x is called the second derivative of y w.r.t. x and is denoted by $\frac{d^2y}{dx^2}$.

Similarly, $\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$ and so on. The n^{th} derivative of y w.r.t. x is denoted by $\frac{d^n y}{dx^n}$ ► Note : $\frac{d^2y}{dx^2} \neq \frac{d^2x}{dy^2}$

7. Solved Example :

Ex.1 Show that the function $f(x) = |x|$ is continuous at $x = 0$. But not differentiable at $x = 0$.

Sol. We have $f(x) = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases}$ Since $\lim_{x \rightarrow 0^+} f(x) = \lim_{x \rightarrow 0^-} f(x) = 0 = f(0)$ the function is continuous at $x = 0$

We also have $f'(0^+) = \lim_{x \rightarrow 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0} \frac{x - 0}{x} = 1$ $f'(0^-) = \lim_{x \rightarrow 0^-} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0} \frac{-(-x) - 0}{-x} = -1$

Since, $f'(0^+) \neq f'(0^-)$, the function is not differentiable at $x = 0$

Ex.2 Examine differentiability of $f(x)$ at $x = 0$ for $f(x) = \begin{cases} \frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$

$$\begin{aligned} \text{Sol. First we obtain } Lf'(0) &= \lim_{h \rightarrow 0} \left[\frac{f(-h) - f(0)}{-h} \right] = \lim_{h \rightarrow 0} \left[\left(-\frac{1}{h} \right) \left(\frac{1 - \cosh}{h \sinh} - \frac{1}{2} \right) \right] \\ &= \lim_{h \rightarrow 0} \left[\frac{h \sinh + 2(1 - \cosh)}{2h^2 \sinh} \right]; \left(\text{in } \frac{0}{0} \text{ form} \right) = \lim_{h \rightarrow 0} \left[\frac{h \left(h - \frac{h^3}{3!} + \frac{h^5}{5!} - \dots \right) - 2 \left(\frac{h^2}{2!} - \frac{h^4}{4!} + \frac{h^6}{6!} - \dots \right)}{2h^2 \left(h - \frac{h^3}{3!} + \dots \right)} \right] \\ &= \lim_{h \rightarrow 0} \left[\frac{h^4 \left\{ \left(\frac{1}{12} - \frac{1}{3!} \right) + \left(\frac{1}{5!} - \frac{2}{6!} \right) h^2 \right\}}{2h^3 \left(1 - \frac{h^2}{3!} + \dots \right)} \right] = \lim_{h \rightarrow 0} \left[\frac{h \left\{ \left(\frac{1}{12} - \frac{1}{3!} \right) + \left(\frac{1}{5!} - \frac{2}{6!} \right) h + \dots \right\}}{2 \left(1 - \frac{h^2}{3!} + \dots \right)} \right] = 0 \end{aligned}$$

$$\text{and } Rf'(0) = \lim_{h \rightarrow 0} \left(\frac{f(0+h) - f(0)}{h} \right) = \lim_{h \rightarrow 0} \left\{ \frac{1}{h} \left(\frac{1 - \cosh}{h \sinh} - \frac{1}{2} \right) \right\} = 0,$$

Similarly, as above. i.e. $Lf'(0) = Rf'(0) \Rightarrow f(x)$ is differentiable at $x = 0$.

Ex.3 Examine differentiability of the function $f(x) = \sin^{-1}(\cos x)$ at $x = n\pi + \frac{\pi}{2}$ where $n \in \mathbb{I}$

$$\text{Sol. First, we obtain } Lf'\left(n\pi + \frac{\pi}{2}\right) = \lim_{h \rightarrow 0} \left(\frac{f\left(n\pi + \frac{\pi}{2} - h\right) - f\left(n\pi + \frac{\pi}{2}\right)}{-h} \right) = \lim_{h \rightarrow 0} \left[\frac{\sin^{-1} \left\{ \cos \left(n\pi + \frac{\pi}{2} - h \right) \right\} - \sin^{-1} \left\{ \cos \left(n\pi + \frac{\pi}{2} \right) \right\}}{-h} \right]$$

$$= \lim_{h \rightarrow 0} \left[\frac{\sin^{-1} \left\{ (-1)^n \cos \left(\frac{\pi}{2} - h \right) \right\} - \sin^{-1} \left\{ (-1)^n \cos \frac{\pi}{2} \right\}}{-h} \right] = \lim_{h \rightarrow 0} \left[\frac{\sin^{-1} \left\{ \sin(-1)^n h \right\} - \sin^{-1} 0}{-h} \right] = \lim_{h \rightarrow 0} \frac{(-1)^n h}{-h} = (-1)^{n-1}$$

$$Rf'\left(n\pi + \frac{\pi}{2}\right) = \lim_{h \rightarrow 0} \left(\frac{f\left(n\pi + \frac{\pi}{2} + h\right) - f\left(n\pi + \frac{\pi}{2}\right)}{h} \right) = \lim_{h \rightarrow 0} \left[\frac{\sin^{-1} \left\{ \cos \left(n\pi + \frac{\pi}{2} + h \right) \right\} - \sin^{-1} \left\{ \cos \left(n\pi + \frac{\pi}{2} \right) \right\}}{h} \right]$$

$$\begin{aligned}
&= \underset{h \rightarrow 0}{\text{Lt}} \left\{ \frac{\sin^{-1} \left\{ (-1)^n \cos \left(\frac{\pi}{2} + h \right) \right\} - \sin^{-1} \left\{ (-1)^n \cos \frac{\pi}{2} \right\}}{h} \right\} = \underset{h \rightarrow 0}{\text{Lt}} \left[\frac{\sin^{-1} \{ (-1)^{n+1} \sin h \}}{h} \right] \\
&= \underset{h \rightarrow 0}{\text{Lt}} \left[\frac{\sin^{-1} \{ \sin(-1)^{n+1} h \}}{h} \right] = \underset{h \rightarrow 0}{\text{Lt}} \frac{(-1)^{n+1} h}{h} = (-1)^{n+1} \quad (\text{Which is equal to } (-1)^{n-1})
\end{aligned}$$

Thus we find $Lf' \left(n\pi + \frac{\pi}{2} \right) = Rf' \left(n\pi + \frac{\pi}{2} \right)$ $\therefore f(x)$ is differentiable at $\left(n\pi + \frac{\pi}{2} \right)$

Ex.4 Find the derivative of the function $f(x)$, defined by $f(x) = \tan^{-1} x$ with respect to x , from the first principle.

Sol. $y = \tan^{-1} x$ or $x = \tan y$. $x + \delta x = \tan(y + \delta y)$. Subtracting, we get $\delta x = \tan(y + \delta y) - \tan y$

$$y = \frac{\sin(y + \delta y)}{\cos(y + \delta y)} - \frac{\sin y}{\cos y} = \frac{\sin(y + \delta y) \cos y - \cos(y + \delta y) \sin y}{\cos y \cos(y + \delta y)} = \frac{\sin(\delta y)}{\cos y \cos(y + \delta y)}$$

Dividing by δy , and inverting, we have $\frac{\delta y}{\delta x} = \frac{\delta y \cos y \cos(y + \delta y)}{\sin \delta y}$

Taking limits on both sides, we obtain $\frac{dy}{dx} = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} = \lim_{\delta y \rightarrow 0} \left[\frac{\delta y}{\sin(\delta y)} \right] \lim_{\delta y \rightarrow 0} [\cos y \cos(y + \delta y)]$

$$= 1 \cdot \cos^2 y = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2} \quad \text{Hence, we have } \frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2}$$

➤ ALTER Method : we have $\frac{dy}{dx} = \lim_{\delta x \rightarrow 0} \frac{f(x + \delta x) - f(x)}{\delta x} = \lim_{\delta x \rightarrow 0} \frac{\tan^{-1}(x + \delta x) - \tan^{-1} x}{\delta x}$

$$= \lim_{\delta x \rightarrow 0} \left[\frac{\tan^{-1} \left(\frac{\delta x}{1 + x(\delta x + x)} \right)}{\delta x} \right] \cdot \frac{1}{(1 + x(x + \delta x))} = \lim_{\delta x \rightarrow 0} \frac{1}{1 + x(x + \delta x)} = \frac{1}{1 + x^2}$$

Ex.5 Find the derivative of y with respect to x , when $y = \frac{3+u}{2+u}$, where $u = \sin^{-1} x$,

$$\text{Sol. } y = \frac{3+u}{2+u} \text{ where } u = \sin^{-1} x. \text{ We find that } \frac{dy}{du} = \left[\frac{(2+u)(1) - (3+u)(1)}{(2+u)^2} \right] = -\frac{1}{(2+u)^2}$$

$$\text{and } \frac{du}{dx} = \frac{1}{\sqrt{1-x^2}} \text{ Hence, we obtain } \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = -\frac{1}{(2+u)^2} \left[\frac{1}{\sqrt{1-x^2}} \right] \text{ where, } u = \sin^{-1} x.$$

Ex.6 Find $\frac{dy}{dx}$ when $y = \tan^{-1} \frac{x}{1+\sqrt{1-x^2}} + \sin \left[2 \tan^{-1} \sqrt{\frac{1-x}{1+x}} \right]$

Sol. (Remark: We will take help of trigonometric substitution for x so as to simplify the function). Put $x = \cos \theta$

$$\begin{aligned}
\therefore y &= \tan^{-1} \left(\frac{\cos \theta}{1 + \sin \theta} \right) + \sin \left[2 \tan^{-1} \left(\tan \frac{\theta}{2} \right) \right] = \tan^{-1} \left(\frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}}{\left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2} \right)^2} \right) + \sin \theta = \tan^{-1} \left(\frac{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} + \sin \frac{\theta}{2}} \right) + \sin \theta \\
&= \tan^{-1} \tan \left(\frac{\pi}{4} - \frac{\theta}{2} \right) + \sin \theta = \frac{\pi}{4} - \frac{\theta}{2} + \sin \theta \quad \therefore \frac{dy}{dx} = \frac{dy}{d\theta} \frac{d\theta}{dx} = \left(-\frac{1}{2} + \cos \theta \right) \left(-\frac{1}{\sin \theta} \right) = \frac{(-x+1/2)}{\sqrt{1-x^2}}
\end{aligned}$$

➤ Note : Why $\tan^{-1} \tan \frac{\theta}{2} = \frac{\theta}{2}$ & $\tan^{-1} \tan \left(\frac{\pi}{4} - \frac{\theta}{2} \right) = \frac{\pi}{4} - \frac{\theta}{2}$, Our assumption $x = \cos \theta \Rightarrow 0 < \theta < \pi \Rightarrow 0 < \frac{\theta}{2} < \frac{\pi}{2}$

we have $\tan^{-1} \tan x = x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, Also $-\frac{\pi}{4} < \frac{\pi}{4} - \frac{\theta}{2} < \frac{\pi}{4}$ Although $\tan \tan^{-1} x = x$ for, $\forall x \in \mathbb{R}$

Ex.7 If $y = \frac{\sin x}{1 + \frac{\cos x}{1 + \frac{\sin x}{1 + \frac{\cos x}{...}}}}$, prove that $\frac{dy}{dx} = \frac{(1+y)\{\cos x + \sin x\}}{1 + 2y + \cos x - \sin x}$

Sol. Given function is $y = \frac{\sin x}{1 + \frac{\cos x}{1 + y}} = \frac{(1+y)\sin x}{1 + y + \cos x}$ or $y + y^2 + y \cos x = (1+y) \sin x$

Differentiate both sides with respect to x , $\frac{dy}{dx} + 2y \frac{dy}{dx} + \frac{dy}{dx} \cos x - y \sin x = (1+y) \cos x + \left(1 + \frac{dy}{dx}\right) \sin x$

or $\frac{dy}{dx} [1 + 2y + \cos x - \sin x] = (1+y) \cos x + y \sin x + \sin x$ or $\frac{dy}{dx} = \frac{(1+y)\{\cos x + \sin x\}}{1+2y+\cos x-\sin x}$

Ex.8 Find dy/dx when $x = a(\theta + \sin \theta)$ & $y = a(1 + \sin \theta)$

Sol. Differentiating with respect to θ , we obtain $\frac{dx}{d\theta} = a(1 + \cos \theta)$ and $\frac{dy}{d\theta} = a \cos \theta$.

Now, we get $\frac{dy}{dx} = \frac{dy}{d\theta} / \frac{dx}{d\theta} = \frac{a \cos \theta}{a(1 + \cos \theta)} = \frac{\cos \theta}{1 + \cos \theta}$

Ex.9 Obtain differential coefficient of $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$ with respect to $\cos^{-1} \sqrt{\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}}$

Sol. Assume $u = \tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$, $v = \cos^{-1} \sqrt{\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}}$

The function needs simplification before differentiation Let $x = \tan \theta$

$$\therefore u = \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right) = \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2} \quad v = \cos^{-1} \sqrt{\frac{1 + \sec \theta}{2 \sec \theta}} = \cos^{-1} \sqrt{\frac{1 + \cos \theta}{2}}$$

$$= \cos^{-1} \left(\cos \frac{\theta}{2} \right) = \frac{\theta}{2} \quad \Rightarrow u = v \quad \therefore \frac{du}{dv} = 1.$$

Ex.10 If $\cos^{-1} \left(\frac{y}{b} \right) = \log \left(\frac{x}{n} \right)^n$, prove that $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + n^2 y = 0$

Sol. Function is $\cos^{-1} \left(\frac{y}{b} \right) = n(\log x - \log n)$

$$\text{Differentiate with respect to } x, -\frac{1}{\sqrt{1-\left(\frac{y}{b}\right)^2}} \frac{1}{b} y_1 = \frac{n}{x} \quad \text{or} \quad \frac{-y_1}{\sqrt{b^2-y^2}} = \frac{n}{x} \quad \Rightarrow n^2(b^2-y^2) = y_1^2 x^2$$

Differentiate both sides of (2) with respect to x , $-2n^2 y y_1 = 2y_1 y_2 x^2 + 2x y_1^2$ or $x^2 y_2 + x y_1 + n^2 y = 0$

Ex.11 Let, $f(x+y) = f(x) + f(y) + 2xy - 1$, $\forall x, y \in \mathbb{R}$. If $f(x)$ is differentiable and $f'(0) = \sin \phi$, then prove that $f(x) > 0$ for $x \in \mathbb{R}$
Sol. Put $y = 0$ in given relation, we get $f(x) = f(x) + f(0) - 1 \Rightarrow f(0) = 1$

$$\text{We have } f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \Rightarrow f'(x) = \lim_{h \rightarrow 0} \frac{f(x)+f(h)+2hx-1-f(x)}{h}$$

$$f'(x) = \lim_{h \rightarrow 0} \frac{2hx}{h} + \frac{f(h)-1}{h} = 2x + \lim_{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} = 2x + f'(0)$$

$$\Rightarrow f'(x) = 2x + \sin \phi \Rightarrow \frac{dy}{dx} = 2x + \sin \phi \Rightarrow dy = (2x + \sin \phi) dx \Rightarrow y = x^2 + x \sin \phi + k$$

$$\Rightarrow y = x^2 + x \sin \phi + 1 \quad \{ \because \text{for } x=0, y=1 \} = \left(x + \frac{\sin \phi}{2} \right)^2 + \frac{\cos^2 \phi}{4} + \frac{3}{4} = + \text{ve}$$

Hence proved.

Ex.12 Test the differentiability of $f(x) = \tan \pi [x] + \tan x$

Sol. Clearly $\tan \pi [x] = 0 \quad \forall x \quad \therefore f(x)$ is actually $f(x) = \tan x$ clearly This is not differentiable at $x = \left(\frac{2n+1}{2} \right) \pi, n \in \mathbb{I}$

CBSE

Some Previous Year Question of JEE

For Class - XII

Q.1 Suppose $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$. If $|p(x)| \leq |e^x - 1 - 1|$ for all $x \geq 0$. Prove that $|a_1 + 2a_2 + \dots + na_n| \leq 1$.

Q.2 Let $f : \mathbb{R} \rightarrow \mathbb{R}$ is a function which is defined by $f(x) = \max \{x, x^3\}$ set of points on which $f(x)$ is not differentiable is

(A) $\{-1, 1\}$ (B) $\{-1, 0\}$ (C) $\{0, 1\}$ (D) $\{-1, 0, 1\}$ [IIT Scr. 2001]

Q.3 Let, $\alpha \in \mathbb{R}$, prove that a function $f : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at α iff there is a function $g : \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at α and satisfies $f(x) - f(\alpha) = g(x)(x - \alpha)$ for all $x \in \mathbb{R}$. [IIT 2001]

Q.4 Find left hand derivative at $x = k$, $k \in \mathbb{I}$. $f(x) = [x] \sin(\pi x)$ [IIT Scr. 2001]

(A) $(-1)^k (k-1)\pi$ (B) $(-1)^{k-1} (k-1)\pi$ (C) $(-1)^k (k-1)k\pi$ (D) $(-1)^{k-1} (k-1)k\pi$

Q.5 Which of the following functions is differentiable at $x = 0$? [IIT Scr. 2001]

(A) $\cos(|x|) + |x|$ (B) $\cos(|x|) - |x|$ (C) $\sin(|x|) + |x|$ (D) $\sin(|x|) - |x|$

Q.6 The domain of the derivative of the function $f(x) = \begin{cases} \tan^{-1} x & \text{if } |x| \leq 1 \\ \frac{1}{2}(|x| - 1) & \text{if } |x| > 1 \end{cases}$ is-

[IIT 2002]

(A) $R - \{0\}$ (B) $R - \{1\}$ (C) $R - \{-1\}$ (D) $R - \{-1, 1\}$

Q.7 Let $f(x) = \begin{cases} x + a & \text{if } x < 0 \\ |x - 1| & \text{if } x \geq 0 \end{cases}$ and $g(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ (x - 1)^2 + b & \text{if } x \geq 0 \end{cases}$, where a and b non-negative real numbers.

[IIT 2002]

Determine the composite function gof . If $(gof)(x)$ is continuous for all real x . Determine the values of a and b . Further, for these values of a and b , is gof differentiable at $x = 0$? Justify your answer.

[IIT 2003]

Q.8 If a function $f : [-2a, 2a] \rightarrow R$ is an odd function such that $f(x) = f(2a - x)$ for $x \in [a, 2a]$ and left hand derivative at $x = a$ is 0, then find the left hand derivative at $x = -a$.

[IIT 2003]

Q.9 If $f(x)$ is a differentiable function and $f'(2) = 6, f'(1) = 4, f'(c)$ represents the differentiation of $f(x)$ at $x = c$, then

[IIT 2003]

$$\lim_{h \rightarrow 0} \frac{f(2 + 2h + h^2) - f(2)}{f(1 + h^2 + h) - f(1)}$$

(A) is equal to 3 (B) will not exist (C) may exist (D) is equal to -3

Q.10 Let y be a function of x , such that $\log(x + y) - 2xy = 0$, then $y'(0)$ is-

[IIT 2004]

(A) 0 (B) 1 (C) 1/2 (D) 3/2

Q.11 $f(x) = \begin{cases} b \sin^{-1}\left(x + \frac{c}{2}\right), & -\frac{1}{2} < x < 0 \\ \frac{1}{2}, & x = 0 \\ \frac{e^{\frac{ax}{2}} - 1}{x}, & 0 < x < \frac{1}{2} \end{cases}$ If $f(x)$ is differentiable at $x = 0$ and $|c| < 1/2$, then find the value of a and prove that $64b^2 = \left(1 - \frac{c^2}{4}\right)$

[IIT 2004]

Q.12 If $f : [-1, 1] \rightarrow R$ and $f'(0) = \lim_{n \rightarrow \infty} nf\left(\frac{1}{n}\right)$ and $f(0) = 0$. Find the value of: $\lim_{n \rightarrow \infty} \frac{2}{\pi} (n+1) \cos^{-1}\left(\frac{1}{n}\right) - n$

[IIT 2004]

$$\text{given that } 0 < \left| \lim_{n \rightarrow \infty} \cos^{-1}\left(\frac{1}{n}\right) \right| < \frac{\pi}{2}.$$

Q.13 If two functions 'f' and 'g' satisfying given conditions for $\forall x, y \in R$. $f(x - y) = f(x)g(y) - f(y)g(x)$ and $g(x - y) = g(x) \cdot g(y) + f(x)f(y)$. If right hand derivative at $x = 0$ exists for $f(x)$ then find the derivative of $g(x)$ at $x = 0$.

Q.14 If $x \cos y + y \cos x = \pi$, then $y''(0) =$

[IIT 2005]

(A) π (B) $-\pi$ (C) 0 (D) 1

Q.15 $f(x) = | |x| - 1 |$ is not differentiable at $x =$

[IIT 2005]

(A) $0, \pm 1$ (B) ± 1 (C) 0 (D) 1

Q.16 If $f(1) = 1, f(2) = 4, f(3) = 9$ & f is twice differentiable then

[IIT 2005]

(A) $f''(x) = 2$ for atleast $x \in [1, 3]$ (B) $f''(x) = f'(x) = 5$; $x \in [1, 3]$ (C) $f''(x) = 2$ for only $x \in [1, 3]$ (D) $f''(x) = 3$, for $x \in (1, 3)$

Q.17 If f is a differentiable function satisfying $f\left(\frac{1}{n}\right) = 0$ for all $n \geq 1, n \in I$, then-

[IIT 2005]

(A) $f(x) = 0, x \in (0, 1]$ (B) $f'(0) = 0 = f(0)$
(C) $f(0) = 0$ but $f'(0)$ not necessarily zero (D) $|f(x)| \leq 1, x \in (0, 1]$

Q.18 If $f''(x) = -f(x)$ and $g(x) = f'(x)$ and $F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$ & given that $F(5) = 5$, then $F(10)$ is-

[IIT 2006]

(A) 15 (B) 0 (C) 5 (D) 10

Q.19 If $f(x) = \min\{1, x^2, x^3\}$, then

[IIT 2006]

(A) $f'(x) > 0 \forall x \in R$ (B) $f(x)$ is continuous $\forall x \in R$
(C) $f(x)$ is not differentiable for two values of x (D) $f(x)$ is not differentiable but continuous $\forall x \in R$

Q.20 $\frac{d^2x}{dy^2}$ equal (A) $\left(\frac{d^2y}{dx^2}\right)^{-1}$ (B) $-\left(\frac{d^2y}{dx^2}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3}$ (C) $\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2}$ (D) $-\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-3}$

[IIT 2007]

આપકા પરિશ્રમ + હમારા માર્ગદર્શન = નિશ્ચિત સફળતા

Q.1 (a) If $x = \sin^{-1} t$ and $y = t^3$ prove that $dy/dx = 3\sqrt{y(y^{1/3} - y)}$ (b) If $y = (1 + 1/x)^x + x(1 + 1/x)$ find dy/dx .
(c) If $y = \log_u |\cos 4x| + |\sin x|$, where $u = \sec 2x$ find dy/dx at $x = -\pi/6$.

Q.2 (a) If $f(x)$ is derivable at $x = 3$ and $f'(3) = 2$ then, find the value of $\lim_{h \rightarrow 0} \frac{f(3+h^2) - f(3-h^2)}{2h^2}$

(b) if $f'(a) = \frac{1}{4}$ then find the value of $\lim_{h \rightarrow 0} \frac{f(a+2h^2) - f(a-2h^2)}{h^2}$

Q.3 Let R be the set of real no. & $f : R \rightarrow R$ be such that for all x & y in R , $|f(x) - f(y)| \leq |x - y|^3$. Prove that $f(x)$ is constant.

Q.4 If $f : R \rightarrow R$ is a function such that $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$ for all $x \in R$ then show that $f(2) = f(1) - f(0)$ and find out the function.

Q.5 Find $f''(0)$ if $f(x) = 2 \sin x \cos(\sin x)$.

*** With Best Wishes ***

