

PHYSICS

Subject Code – 042

Class XI-XII (2025-26)

Chemistry by Er. Jitendra Gupta Sir

There is nothing special in the world. Nothing magic. Just physics.

Physics is really hard if you don't understand what's going on. Understand it and it's piss easy.

At exam time CBSE class 12th, related students are highly viewed under stress and performance pressure. As it is the duration of the academic session that affects the performance of the students to a great extent. It is important for them to shift their regular approach of study to a data-based calculative approach. Therefore, like other subjects, the marking for CBSE class 12th board exam can be done through the weightage based important chapters and topics of physics, the most profound way to excel in physics.

"Reading is essential for those who seek to rise above the ordinary."

**ANJIT'S
• LIBRARY •**

Study Space & Book Store

**ESTD
2018**

MONTHLY FEE • 1100/- (Deposit 1 Month Adv.)

CONTACT US: +91-7000879945 www.anjitacademy.com

PHYSICS (Code No. 042)
COURSE STRUCTURE
Class XI - 2025-26 (Theory)

Time: 3 hrs.

Max Marks: 70

UNIT	CHAPTERS	MARKS
Unit-I	Physical World and Measurement	23
	Chapter-1: Units and Measurements	
Unit-II	Kinematics	
	Chapter-2: Motion in a Straight Line	17
	Chapter-3: Motion in a Plane	
Unit-III	Laws of Motion	
	Chapter-4: Laws of Motion	20
Unit-IV	Work, Energy and Power	
	Chapter-5: Work, Energy and Power	
Unit-V	Motion of System of Particles and Rigid Body	17
	Chapter-6: System of Particles and Rotational Motion	
Unit-VI	Gravitation	
	Chapter-7: Gravitation	10
Unit-VII	Properties of Bulk Matter	
	Chapter-8: Mechanical Properties of Solids	
	Chapter-9: Mechanical Properties of Fluids	
	Chapter-10: Thermal Properties of Matter	
Unit-VIII	Thermodynamics	20
	Chapter-11: Thermodynamics	
Unit-IX	Behaviour of Perfect Gases and Kinetic Theory of Gases	
	Chapter-12: Kinetic Theory	10
Unit-X	Oscillations and Waves	
	Chapter-13: Oscillations	
	Chapter-14: Waves	
Total		70

Unit I: Physical World and Measurements

Chapter-1: Units and Measurements

Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. significant figures, Determining the uncertainty in result. Dimensions of physical quantities, dimensional analysis and its applications.

Unit II: Kinematics

Chapter-2: Motion in a Straight Line

Frame of reference, Motion in a straight line, Elementary concepts of differentiation and integration for describing motion, uniform and non- uniform motion, average speed and average velocity and instantaneous velocity, uniformly accelerated motion, velocity - time and position-time graphs. Relations for uniformly accelerated motion (graphical and calculus treatment).

Chapter-3: Motion in a Plane

Scalar and vector quantities; position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors, Unit vector; resolution of a vector in a plane, rectangular components, Scalar and Vector product of vectors.

Motion in a plane, cases of uniform velocity and uniform acceleration- projectile motion, uniform circular motion.

Unit III: Laws of Motion

Chapter-4: Laws of Motion

Intuitive concept of force, Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion.

Law of conservation of linear momentum and its applications.

Equilibrium of concurrent forces, Static and kinetic friction, laws of friction, rolling friction, lubrication.

Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on a banked road).

Unit IV: Work, Energy and Power

Chapter– 5: Work, Energy and Power

Work done by a constant force and a variable force; kinetic energy, work- energy theorem, power.

Notion of potential energy, potential energy of a spring, conservative forces: non-conservative forces, motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.

Unit V: Motion of System of Particles and Rigid Body

Chapter–6: System of Particles and Rotational Motion

Centre of mass of a two-particle system, momentum conservation and Centre of mass motion.

Centre of mass of a rigid body; centre of mass of a uniform rod. Moment of a force, torque, angular momentum, law of conservation of angular momentum and its applications.

Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions.

Moment of inertia, radius of gyration, values of moments of inertia for simple geometrical objects (no derivation).

Unit VI: Gravitation

Chapter – 7: Gravitation

Kepler's laws of planetary motion, universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth.

Gravitational potential energy and gravitational potential, escape speed, orbital velocity of a satellite, energy of an orbiting satellite.

Unit VII: Properties of Bulk Matter

Chapter–8: Mechanical Properties of Solids

Elasticity, Stress-strain relationship, Hooke's law, Young's modulus, bulk modulus, shear modulus of rigidity (qualitative idea only), Poisson's ratio; elastic energy. Application of elastic behavior of materials (qualitative idea only).

Chapter-9: Mechanical Properties of Fluids

Pressure due to a fluid column; Pascal's law and its applications (hydraulic lift and hydraulic brakes), effect of gravity on fluid pressure.

Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, critical velocity, Bernoulli's theorem and its simple applications (Torricelli's law and Dynamic lift).

Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.

Chapter-10: Thermal Properties of Matter

Heat, temperature, thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; C_p , C_v - calorimetry; change of state - latent heat capacity.

Heat transfer-conduction, convection and radiation, thermal conductivity, qualitative ideas of Blackbody radiation, Wein's displacement Law, Stefan's law.

Unit VIII: Thermodynamics

Chapter-11: Thermodynamics

Thermal equilibrium and definition of temperature, zeroth law of thermodynamics, heat, work and internal energy. First law of thermodynamics, Second law of thermodynamics: Thermodynamic state variable and equation of state. Change of condition of gaseous state - isothermal, adiabatic, reversible, irreversible, and cyclic processes.

Unit IX: Behavior of Perfect Gases and Kinetic Theory of Gases

Chapter-12: Kinetic Theory

Equation of state of a perfect gas, work done in compressing a gas.

Kinetic theory of gases - assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equi-partition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path, Avogadro's number.

Unit X: Oscillations and Waves

Chapter-13: Oscillations

Periodic motion - time period, frequency, displacement as a function of time, periodic functions and their applications.

Simple harmonic motion (S.H.M), uniform circular motion and its equations of motion; phase; oscillations of a loaded spring- restoring force and force constant; energy in S.H.M.

Kinetic and potential energies; simple pendulum derivation of expression for its time period.

Chapter-14: Waves

Wave motion: Transverse and longitudinal waves, speed of travelling wave, displacement relation for a progressive wave, principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics, Beats.

PRACTICALS

The record, to be submitted by the students, at the time of their annual examination, has to include:

- Record of at least 8 Experiments [with 4 from each section], to be performed by the students.
- Record of at least 6 Activities [with 3 each from section A and section B], to be performed by the students.
- Report of the project carried out by the students.

EVALUATION SCHEME

Time 3 hours

Max. Marks: 30

Topic	Marks
Two experiments one from each section	7+7
Practical record (experiment and activities)	5
One activity from any section	3
Investigatory Project	3
Viva on experiments, activities and project	5
Total	30

CLASS XII (2025-26)

PHYSICS (THEORY)

Time: 3 hrs.

Max Marks: 70

UNIT	CHAPTERS	MARKS
Unit—I	Electrostatics	16
	Chapter–1: Electric Charges and Fields	
	Chapter–2: Electrostatic Potential and Capacitance	
Unit-II	Current Electricity	16
	Chapter–3: Current Electricity	
Unit-III	Magnetic Effects of Current and Magnetism	17
	Chapter–4: Moving Charges and Magnetism	
	Chapter–5: Magnetism and Matter	
Unit-IV	Electromagnetic Induction and Alternating Currents	17
	Chapter–6: Electromagnetic Induction	
	Chapter–7: Alternating Current	
Unit-V	Electromagnetic Waves	18
	Chapter–8: Electromagnetic Waves	
Unit–VI	Optics	
	Chapter–9: Ray Optics and Optical Instruments	18
	Chapter–10: Wave Optics	
Unit–VII	Dual Nature of Radiation and Matter	12
	Chapter–11: Dual Nature of Radiation and Matter	
Unit–VIII	Atoms and Nuclei	12
	Chapter–12: Atoms	
	Chapter–13: Nuclei	
Unit–IX	Electronic Devices	7
	Chapter–14: Semiconductor Electronics: Materials, Devices and Simple Circuits	
Total		70

Unit I: **Electrostatics**

Chapter–1: Electric Charges and Fields

Electric charges, Conservation of charge, Coulomb's law-force between two- point charges, forces between multiple charges; superposition principle and continuous charge distribution.

Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in uniform electric field.

Electric flux, statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside).

Chapter–2: Electrostatic Potential and Capacitance

Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two-point charges and of electric dipole in an electrostatic field.

Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarization, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor (no derivation, formulae only).

Unit II: **Current Electricity**

Chapter–3: Current Electricity

*Educating For
Transmission Of Civilization*

Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity, temperature dependence of resistance, Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel, Kirchhoff's rules, Wheatstone bridge.

Unit III: **Magnetic Effects of Current and Magnetism**

Chapter–4: Moving Charges and Magnetism

Concept of magnetic field, Oersted's experiment.

Biot - Savart law and its application to current carrying circular loop.

Ampere's law and its applications to infinitely long straight wire. Straight solenoid (only qualitative treatment), force on a moving charge in uniform magnetic and electric fields.

Force on a current-carrying conductor in a uniform magnetic field, force between two parallel current-carrying conductors-definition of ampere, torque experienced by a current loop in uniform magnetic field; Current loop as a magnetic dipole and its magnetic dipole moment, moving coil galvanometer- its current sensitivity and conversion to ammeter and voltmeter.

Chapter-5: Magnetism and Matter

Bar magnet, bar magnet as an equivalent solenoid (qualitative treatment only), magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis (qualitative treatment only), torque on a magnetic dipole (bar magnet) in a uniform magnetic field (qualitative treatment only), magnetic field lines.

Magnetic properties of materials- Para-, dia- and ferro – magnetic substances with examples, Magnetization of materials, effect of temperature on magnetic properties.

Unit IV: Electromagnetic Induction and Alternating Currents

Chapter-6: Electromagnetic Induction

Electromagnetic induction; Faraday's laws, induced EMF and current; Lenz's Law, Self and mutual induction.

Chapter-7: Alternating Current

Alternating currents, peak and RMS value of alternating current/voltage; reactance and impedance; LCR series circuit (phasors only), resonance, power in AC circuits, power factor, wattless current. AC generator, Transformer.

Unit V: Electromagnetic waves

Chapter-8: Electromagnetic Waves

Basic idea of displacement current, Electromagnetic waves, their characteristics, their transverse nature (qualitative idea only).

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma rays) including elementary facts about their uses.

Unit VI: Optics

Chapter-9: Ray Optics and Optical Instruments

Ray Optics: Reflection of light, spherical mirrors, mirror formula, refraction of light, total internal reflection and optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lens maker's formula, magnification, power of a lens, combination of thin lenses in contact, refraction of light through a prism.

Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.

Chapter-10: Wave Optics

Wave optics: Wave front and Huygen's principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygen's principle. Interference, Young's double slit experiment and expression for fringe width (No derivation final expression only), coherent sources and sustained interference of light, diffraction due to a single slit, width of central maxima (qualitative treatment only).

Unit VII: Dual Nature of Radiation and Matter

Chapter-11: Dual Nature of Radiation and Matter

Dual nature of radiation, Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light.

Experimental study of photoelectric effect

Matter waves-wave nature of particles, de-Broglie relation.

Unit VIII: Atoms and Nuclei

Chapter-12: Atoms

Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model of hydrogen atom, Expression for radius of nth possible orbit, velocity and energy of electron in nth orbit, hydrogen line spectra (qualitative treatment only).

Chapter-13: Nuclei

Composition and size of nucleus, nuclear force

Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number; nuclear fission, nuclear fusion.

Unit IX: Electronic Devices

Chapter-14: Semiconductor Electronics: Materials, Devices and Simple Circuits

Energy bands in conductors, semiconductors and insulators (qualitative ideas only) Intrinsic and extrinsic semiconductors- p and n type, p-n junction

Semiconductor diode - I-V characteristics in forward and reverse bias, application of junction diode -diode as a rectifier.

PRACTICALS

The record to be submitted by the students at the time of their annual examination has to include:

- Record of at least 8 Experiments [with 4 from each section], to be performed by the students.
- Record of at least 6 Activities [with 3 each from section A and section B], to be performed by the students.
- The Report of the project carried out by the students.

Evaluation Scheme

Max. Marks: 30

Time 3 hours

Two experiments one from each section	7+7 Marks
Practical record [experiments and activities]	5 Marks
One activity from any section	3 Marks
Investigatory Project	3 Marks
Viva on experiments, activities and project	5 Marks
Total	30 marks